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ABSTRACT 

Let IG(n) be the Euclidean group with dilations. It has a maximal compact 

subgroup SO(n - 1). The homogeneous space can be realized as the phase 

space I G ( n ) / S O ( n  - 1) -~ R n × R n. The square-integrable representa- 

tion gives the admissible wavelets AW and wavelet transforms on L2(Rn). 

With Laguerre polynomials and surface spherical harmonics an orthogonal 

decomposition of AW is given; it turns to give a complete orthogonal de- 

composition of the L 2-space on the phase space L 2 ( R  n x R n, dxdy / ly[  n+ 1) 

t23 00 51:3 °0 fr~ a t A k of the form ~,t/k=o ~,l~t=o ~,I/j=o l,j" The Schatten-von Neumann prop- 

erties of the Toeplitz-Hankel type operators between these decomposition 

components are established. 

1. I n t r o d u c t i o n  

The continuous wavelet transform in the one-dimensional case can be obtained 

in two ways: one from the theory of square-integrable group representation and 

the other from the Calderdn representation formula. 

Let G be a locally compact group with left Haar measure dx. Let x --* U(x) 

(x E G) be an irreducible unitary representation of G in a Hilbert space 7-/. 

A vector ¢ E 7-/is said to be admissible if it satisfies the following "admissibility 

condition": 

(1.1) 0 < c¢ : = / c  I (¢ 'U(x )¢ )12dx / (¢ '¢ )  < 
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where (., .) is the inner product of 7-/. We denote the set of all such vectors by 

AW. If AW# ¢, then the representation U is called square-integrable. For ¢ • 

AW, f ~ (f, g(x)~) is called "continuous wavelet transform". 

A. Grossman and J. Morlet [GM] introduced the wavelet transform in the 

one-dimensional case, where the group G is the affine group ax + b. Let 

f(b,,~)(x) :-- U(b,a)f(x) = x~ ~ 

be the representation of G on the Hardy space H2(R). Then the (affine) wavelet 

transform W~ for f in H2(R) associated with an admissible wavelet ¢ is given 

by 

W~f(b,a):=(f,g'(b.a))= -~a /n-¢ (~a b) f(x)dx. 

If ¢ • AW and ¢(~) = 0 for ~ _< 0, then ¢ is called an admissible analyzing 

wavelet. For an admissible analyzing wavelet ¢, every f • H 2 can be recon- 

structed from Wcf(b, a): 

- fa dadb 
(1.2)  f ( x )  = C¢ 1 Wcf (b ,a )¢ (b ,a ) (X  ) -~  . 

In fact, the above analysis by A. Grossman and J. Morlet was quite close to 

a technique developed by A. Calder6n and his collaborators for the study of 

singular integral operators [C] in 1964. The basic tool is the so-called Calder6n 

representation formula, that can be expressed as follows. Let ¢(x) be a function 

such that ¢ • LI(R), ¢(-~)  = ¢(~) and 

I 2 (1.3) 0 < c~ := < c¢, 

then for f • L2(R), we have the Calder6n formula: 

( % * % * I ( x ) )  , 
2c¢ 

where 

If ¢ e LI(R), ~(~) = 0 for ~ < 0 and ¢ satisfies (1.3), then for f • H 2 the 

Calder6n formula becomes 

(1.4) I(z) = =7- ( % ,  % • I ( x ) )  • 
c¢ 
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In fact, (1.3) is just the admissibility condition (1.1). For f C H 2, f ~ (Py*f(x) 
is the wavelet transform and (1.2) is (1.4). 

Let U be the upper-half plane. In [JP1], [JP2], by an orthogonal decomposition 

of AW with Laguerre polynomials, orthogonal decompositions of L2(U, y'~dxdy) 
were given in the cases a = - 2  and a > - 1  respectively. The Toeplitz-Hankel 

type operators between the decomposition components were defined, and bound- 

edness, compactness and Schatten-von Neumann properties of them were estab- 

lished. In this paper, we want to consider the similar problems in the higher- 

dimensional case. 

From the above discussion, we know that in the one-dimensional case the 

two different ways can induce the same results, i.e. (1.2) and (1.4). In the 

higher dimensional case, since there is no concept of the "analyzing" in the 

definition of admissible wavelet, the above two ways will induce two different 

results. One is the Calder6n representation formula, which induces a decom- 

position of L2(R TM, dxdy/ly]'+l), and the other is the wavelet transform asso- 

ciated with the square-integrable group representation, see [To]. Here we will 

introduce another kind of wavelet transform which induces a decomposition of 

L2(R n × R n, dxdy/]yln+l). 
The n-dimensional generalization of the Calder6n formula is quite simple. The 

wavelet ~/, is now a radial function in LI(R ") such that 

" ( s n - 1  2 2 0 ( c ~ : = V o l  a = < c ~  
n 

for all ( ~ 0. Without confusing with the definition of ¢(b,a)(x) in the case n = 1, 

we also let 

Then for f E L2(Rn), 

1 /R Tf (b ,a)~(b ,a)(x)~ (1.5) l ( x )  = 
c¢ ~. ×R,~ 

where R~_ = (0, c~) and Tf(b, a) is the function of n + 1 variables defined by: 

(1.6) Tf(b, a) := (f,  ¢(b,a)). 

The map .f ~ Tf(b, a) is the wavelet transform associated with ¢. In [JP3], 

we study this kind of wavelet transform associated with Hermite polynomi- 

als and we construct a series of wavelets. The ranges of this kind of wavelet 
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transform of L2(R ~) with these wavelets form an orthogonal decomposition of 

L2(R ~+l, dxdy/lYln+l). 

The wavelet transform with the square-integrable group representation in the 

higher-dimensional case is associated with the group IG(n), the Euclidean group 
with dilations, introduced by R. Murezin [Mu]. Namely, 

IG(n) : = R" × R~ × SO(n)  

= {g = (b, ~, p) :  b e R ", a > 0, p e SO(n)} ,  

with the group law: 

(b', a', p')(b, a, p) = (a'p'b + b', a'a, p'p). 

0 p b )  and the above group The elements g of IG(n) can be written as 1 ' 

operation becomes the product of matrices. IG(n) has the left Haar measure 

d9 = a-'~-ldadbdp, where dp is the Haar measure of SO(n). Let U 9 be the 

irreducible unitary representation of IG(n) on L2(R n) defined by 

v g ¢ ( x )  := Cg(x) = a - " / ~ ¢ ( g - l ( x ) )  

where 

g=(b ,a ,p ) ,  g ( x ) = a p ( x ) + b  and g- l (x )  = l p - l ( x  - b). 
a 

The admissibility condition is 

see [Mu], [To] or by a direct calculation. For f E L2(R"), 

iR . . . .  dadbdp 1 Ts(b, a, p)yJ(b,,,,o)tx) f ( x )  : ,_-7- k¢ ~xa-xso(~) 

and the wavelet transform is now the function in L2(R~ x R n x SO(n)) defined 

by 

(1.S) TAb, a, p) := (f, ¢(b,o,.)), 

where ~P(b,a,p):= Ug~b = a- ,q2¢ (~p- l ( x  _ b)). 
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The wavelet transforms (1.6) and (1.8) are functions of n + 1 and n(n -}- I)/2 -}- 1 

variables respectively, thus they cannot be considered as functions on the phase 

space. The functions on the phase space R n x R n of R n depend on 2n variables. 

We want now to generalize the affine wavelet transform to higher dimensions. In 

order that the generalized wavelet transform will be a mapping from L2(R n) to 

the space of functions on the phase space R n x R n, we will consider a wavelet 

transform associated with the square-integrable group representation modulo a 

subgroup (see [To]). We will consider here the quotient group IG(n)/SO(n - 1). 

Since 
I G ( n ) / S O ( n -  1) = R~_ x R n x S O ( n ) / S O ( n -  1) 

• R,~ S~-1 R n = R+ x x = x R n, 

the wavelet transforms of f E L2(R n) are functions on R n x R n. In this case, 

for f E L2(Rn), it is also possible to reconstruct f (x)  from the corresponding 

wavelet transform. Let us give the definition of the wavelet transform. 

Let ~ = (1, 0 , . . . ,  0) t be a fixed point in S ' -1 ;  here ~t denotes the transpose 

of a vector ~ in R'L For any ~ C S "~-1, there exists an element p~ E SO(n) such 

that  p~-l~ = w. In fact there exists a family of such p~, see [Vii, p. 437. Here for 

E S n-l, only one element p~ is corresponded in a fixed way and we define 

¢O,a,o(x) := a-n/2~ ( lp -~ l (x -  b)) , 

and the wavelet transform of f E L2(R '~) to be 

(1.9) T$(b, a, ~) := (f, ¢(b,a,O). 

Then for some functions ¢ (the admissible wavelets), the following reconstructing 

formula holds: 

JR dadbda(~) 1 Tf(b,a,~)¢O,a,O(x) a n+l , (1.10) f (x)  = ~ ~_xR~xS--' 

where da(() is the normalized surface area measure on S ~-1. Taking Fourier 

transforms on both sides of (1.10) or by calculating 

, ~,2 dadbdo'(() 
fa; ×n.×s.-, ' 

we can get that  the admissible condition (assuring (1.10) true) is 

fo~ ~s (ap-~lb)l 2dada(~) 
- he < ~ ,  
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and he is a constant independent of all b E S ~-1. For radial functions ¢, this 

admissible condition is just (1.7). But for a general functon ¢, this condition is 

hard to verify. In order to give a good admissible condition as (1.7), we introduce 

another kind of wavelet transform. To do this, taking Fourier transforms of (1.9) 

with respect to the first variable b, we have 

(1.11) TI(~, a, ~) = a n/=(P(al,71p-~,7') ](~), 

with 77 = [~?[~/'. 

For (b, a, ~) E R n x R~_ x S n- l ,  we define wavelet transform Wcf(b, a, ~) of 

f E L2(R '~) via the Fourier transform with respect to the first variable, 

(1.12) (W¢ )^ f 07, a, ~ ) := an/2~(aiTI]p,7,().f (~?), 

where for 77 E R '~, p,, E SO(n) is given as above, i.e. 77 -- ]~]~' = ]~IP,7 'w. If ¢ 

is a radial function, then (1.12) is (1.9). Without confusion with the above, also 

denote ¢O,a,e) by 

(1.13) ¢(b,,,,~)(n) :--- a"/~e-'b~(alnlP,'~), 

then W~f given by (1.12) also can be written as (1.9) with ¢(b,a,~) given by 

(1.13): 

(1.14) Wcf(b, a, ~) -- (f, ¢(b,a,~)). 

For this kind of wavelet transform, the admissible condition is the following: 

9~o°° jfs ,¢(a,~,p,l,~), 2dada(~) ( 1 . 1 5 )  - c ¢  < oo ,  
~ - 1  a 

for all ~7 E R"/{O}. Since da(~) is invariant under the action of SO(n), we have 

left side of ( 1 . 1 5 ) = / o  °° fs,,-~ [(b(a[~l[~)12dada(')a 

fe d~ 
= . I ¢ ( ~ ) t ~ l T  

Finally we know the admissible condition is still (1.7). Thus in the following, let 

AW = ¢ :  ¢ e L2(Rn),0 < k¢ := . [¢(~)[ ~ < oo , 
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and for ¢ E AW, the wavelet transform of f E L2(R ~) is given by (1.12). 

In this paper, we give an orthogonal decomposition of AW to be s--p-gff{¢ k't'j } 

with the help of Laguerre polynomials L~'~)(x) and the surface spherical har- 

monics YJ. Then, using this decomposition and the wavelet transform given by 

(1.12), we construct an orthogonal decomposition of the L2-space on the phase 

space L2(R n x R ~, dxdy/lyl n+l) of the form (~k=0 ~ (~)~--o ~ja,=o Akl,j' where A kl,j 

are the ranges of wavelet transform (1.12) of the orthogonal wavelets Ck,z,j with 

f E L2(Rn). We then study the boundedness, compactness and Schatten-von 

Neumann properties of the Topelitz-Hankel type operators between the compo- 

nents of this decomposition. We will construct the orthogonal decomposition and 

formulate main results about the operators in §2, and give the proofs in §3. 

2. T h e  space  d e c o m p o s i t i o n  an d  t h e  m a i n  r e su l t s  

First, let us construct an orthogonal decomposition of AW. Let Hz be the space 

of all linear combinations of functions of the form f(r)Y(x), where f ranges over 

the radial functions and Y ranges over the solid spherical harmonics of degree I. 

Then L2(R ~) can be decomposed as the orthogonal sum (see [SW], p. 151): 

oo 

(2.1) L2(R n) = ~ H z .  
/----0 

Every element ft in Hi can be written in the form ~* Ej=I f,,j(r)Y](x), and 

~ lft(x)l 2dx = [ft,j(r)12rn-ldr, 
j = l  0 

where (n ll) 
a o  = 1 ,  a l  = rt, al = l - - 2 ' - 

and l a~ {Y~ (x)}j= 1 is an orthogonal basis of the space ~/, of surface spherical har- 

monics of degree I (see [SW] p. 140). It is well known for n = 2, ak = 2 and 

rlk(X)_ coskO Y~(x) = sinkO e,O. , v f  ~ with x = 

For n _> 3, let us give the orthogonal basis YJ of 7-/1. For x E S n - l ,  x = 

x 2 Write x in spherical coordinates: ( x l , . . . , x n ) ,  let 7n2-j = x 2 1 + ' " +  n- j  

xn_j _ cos0,~_j_x, 7~- j -1  _ s in0~_j_l  
7n-j 7n-j 
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with 0 < 01 < 21r, 0 < 0~ < 7r for 2 < v < n - 1, then 

da(x) = F(~= ) sin '~-2 0~-1. ."  sin 02dO1.'. dO,~_l. 
2~'~ 

Let C~(t) be the Gegenbauer polynomials of degree k; they can be written as 

_ 2kr(p + k) [ k(k - 2) 
C~(t) k!r(p) ~t~ - - 2 ~ ( ~  1) t~ 

k ( k -  1 ) ( k -  2 ) ( k -  3) tk_ 4 + ' - . ] .  
+Vl. 2...(p+ k- 1)0,+ k- 2) J 

It is known that 
[2(k+p) k!]t / ~ 

2P-iF(P) [F(--~p+-l-)~] c~(t) =0 

is an orthonormal basis on the segment [-1,  1] relative to the weight (1 - t2 )v -½.  

Let 

A z Hn-3C ~-~-2+k'+~(cOs0n-s-1)sin k.+~ 0,~ ~ le +ik"-20~ (2.2) GIK(x) := K 8=0 k,-k,+l - - , 

where K = (kl , . . . , - t -k=-2) ,  l = ko > kl > .." > k,~_2 > 0 and A~( is a nor- 

malization constant. Then for n > 3, the canonical basis Y](x) in T/t is the 

rearrangement of G~ in the following order: GiK(x), K = (k l , . . . ,  +kn-2)  pre- 

cedes G~(x),  M = ( m l , . . . , + m ~ _ 2 )  if there is an s such that ki = mi, 0 < 

i < s and ks+l < ms+l (or +k=_2 < +ran-u) .  For Y2 and G~,  see [Vi] 

pp. 457-468. 

If ¢ E AW C L2(Rn), then we can write 

1=0 j = l  

¢({) _ ~  I ~  ~ edt,/r)y~(~, 
- -  l=0  j = l  r - - ~  J ~'~] 

and 

77va¢=ZZe~[ Isi,A,-)I ~dr. (2.3) 
JR '~ /=0 j = l  J0  r 

For a > -1 ,  let L~<~)(x) k = ~ = 0  (~+~)(-x)~'/v! be the Laguerre polynomials 

(see [Sz]). They satisfy 

/? ( 2 . 4 )  ~-=~°C~°)(~)L~,)(x)dx = r (~  + 1) k e~" 
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For k, l E Z +, 1 _< j _< at, let Ck,l,j be the functions on R n, defined via their 

Fourier transforms: 

(2.5) g)k't'J(5) := 12~[%--~-e-I~lL(~)(21~[)Y31(5). 

By (2.3), Lemma 2.18 in [SW] and by Theorem 5.7.1 in [Sz], 

{e-X x~ L('~) (x) }¢~= o 

is complete in L2(0, co). Thus we have 

AW = s--p-~{¢k't'J}{k>0,1>0,1<j<a, }. 

Let us denote L 2 := L2(R n × R n, dxdy/lyl'~+l). For ¢ E AW, let We be the 

operator (wavelet transform) from L2(R n) into L 2 defined by (1.12). Let A¢ 

denote the range of We, i.e. 

(2.6) A~ := {Wcf(x ,  y) = Wcf (x ,  [Yl, Y'): x e R '~, 

and y = lYlY' e R n, y' • S n-l,  f • L2(R'~)}. 

Let r be the operator from A¢ onto L2(R n) defined by 

(2.7) v(F)(x):---- k~1(27r) -n/R,~xR~×S,,_I F(~ ,a ,~ )e i~?x~) (a l , lp~? ,~)da~(~)  

where F(~?, a, ~) denotes the Fourier transform of F(b, a, ~) to the first variable. 

Then for ¢ CAW, vW¢ = I on L2(Rn), this is just the reconstructing formula. 

The space A¢ has a reproducing kernel, denoted by K(g, g~) = Ka~ (g) with 

gl = (Xl, al, ~1), g = (x, a, ~). Let W¢f  be given by (1.14). By the reconstructing 

formula 

In  (x~ dadbda(() f ( x )  ---- k~ 1 ~xR,~xS,~_ (f,¢(b,a,~))¢(b,a,~) , , ~ , 

we have 

(2.8) 
f 

(L ¢(bl,a,,~l)) = k~ 1 ]n~_×n.×s~-i 
Thus by (2.8), 

Kg, (g) = k~l(¢(bl,a,,~,), ~)(b,a,~))" 

dadbda(~) 
(f'~)(b'a'~))(~)(b,a,~)'~)(bl,a'l,~t)) ~ " 
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Taking the Fourier transform with respect to the variable b, we have 

1 ^ ^ n 2  
(2.9) /~9,(7/, a, ~ ) =  -~¢¢(a[~7[p~,~)gZ(b,,al,~l)(~)(aal) / 

= ~---~b(alrllp,7,~)~b(altrllp,,,~l)e -i'bl (eel) n/2. 

If ¢ = Ck,t,j is defined by (2.5), we obtain operators T k,z'j := W¢~,l,j, r k,z,j and 

subspaees A~,j from (1.12), (2.7) and (2.6) respectively. 

From the orthogonality of L~'~)(x) and Y](~), we know A~j are mutually 

orthogonal subspaces of L 2. Moreover, we have 

THEOREM 1: Let A~,j be the subspaces defined by (2.6) with ¢ = Ck,l,j, then 

O0 ~2¢) a l  

L2( R n × R n , d x d y / l y p  +1) = O ~ ~ mlk, j .  
k----0 l=O j = l  

From (2.9), we know that each A~j has reproducing kernel: 

(2.10) ^ k,t j (ala)'q____~2~k,t,j(alrllp,7,~)~bk,t,J(allrllpv,~l)e-,Vbl. 
Kg 1 ' (~],a,~) - kck,,,j 

We can calculate 
k2 _ r ( k  + a + 1) 

Let P~j be the orthogonal projection from L 2 onto Aktd," then for (b, a, ~) E 

R n x R~ x S n- l ,  we have 

fit  K k't'j (rh ~)F(gl)dgl, (2.11) (P~jF)(b,a,~) = .xRS xS.-~ --g' a, 

where 
dbxdalda(~l) withgl  (bl,al,~1) f o r a l l F E L  2. dgl = = a~ +1 

We now define the Toeplitz-Hankel type operators: 

(2.12) ~k,l,j ._ ~,k ~ ok' b,kl ,l I ,jl .-- -rl, j lVlbZ-ll ,jl 

where Mb is the multiplication operator by b and b(x, a) = b(x, a, 0) is a function 

on R n × R~_ x S n-1 restricted to R '~ × R~_, defined by its Fourier transform with 

respect to the first variable x: 

(2.13) b(., a ) (~) :=  e-I~lab(~). 
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Let Bp be the Besov space B]'P(Rn). In what follows b E Bp means its 

boundary value b(x), defined by (2.13), is in Bp. Let Sp be the Schatten-von 

Neumann class. See [JP], [P] for information concerning the space Bp and Sp. 
We have 

,-pk,l,j THEOREM 2: Let ~b,k',l',j' be the operator det~ned by (2.12), then: 
Tk,Z,J (1) I l l  ¢ l', then "b,k',V,j' -- 0. 

T k,l,J T k , l , j  (2) I l l  = l' and k = k', then b,k',t',~' E So~ iffb E L°°; "b,k',vj' is never compact 
unless it is zero. 

n Tle,l,j (3) I l l  = l ' ,k ¢ k' and ~ < p < oe, then b,k',vj' E @ iffb E Bp. 
__ n T k , l , j  (4) E l  = l ' ,k ¢ k' and 0 < p < ~ and.b,k,,v,j, E Sp, then b = 0. 

T k,l,j Remark: From Theorem 2, we know that  the cut-off phenomenon of b,k',l',j' 
depends only on k and k', and it happens at the point i~k, I . 

3. The  proof  of  Theorem 2 

k ~ Applying (2.11) and (2.12) to Fix  , y, p) = Wck,,j,.v f (x ,  y, p) E Av j , ,  we have 

(T'k'~'~ " ' "  fn b,~,,,,,j,~ Jtx, y , . )  = Kg;',J(gl[b(~l)W~,,,,,,, f(gl)]agl,  
x x S "  

with g = (x, y, p) and gl = (xl, Yl, Pl). Taking the Fourier transform with respect 

to the first variable x, we have 

k l , j  A (T;,[,,v,j,F) ((,Y,P) 

_ y~_ 
k,~,,,, -xn;xs-- '  Ck' l 'J (Y l~ lP~'P) (~k ' l 'J (v l~ lP~'px)e -~='"  

[b(x~, v)W¢., ,,,,, ](zx, v, px)] v~ dx~dvd,~(pl) 
v n + l  

Y~ ¢k'lJ(Yl~lP~'P) / n  (pk,tJ(vl~lp~,pl). 
= ~ " x R ; x S  "-1 

, /  g(-, v)((  - . ) . f(n)¢k, ,v, j , (vl . lo. ,pl)ena~'t°(o~) (2~) n V 

YeCk'lJ(Yl~lP~'P) [ ,--k,l j , ,  
= Jn~ r l ) -~k , ,~ ,  j, t~ (2~)nk¢~,,,j /(~)1,(~ - ~)d~, 

k l j  
where Ak;},,j, (~, r/) is given by 
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(3.1) kd,j Ak,,,,,j, if ,  ~) 

=/s, , - , /0  °° '~"'J (~ k' Ip~' P~ ) e - ~ l ~ - " l C k '  " "J '  ( v l n lP ,  ' P l  ) dvd°'(Plv. ) 

f0 ° e-HIq+l,fl+l~-,fl)L(~) (~) ~ = (2vi(i)Lk, (2vlvl)(41ql~l) ~ v dv. 

L ._  ~ Y] (P(, p, ) Y]; (Pn, pl lda(p, ) 

- (41q1'71){~+1)/2 Ak'k' B(Z'J)q"J')((',~1') 
(Iq + I~1 + I~ - ~1) ~+1 (~' ~ )  

Here ( = I~1(', r /=  It/It/' and 

(3.2) Ak'k'((, r/) -- 

0 ° 21q v)L~?) ( 21HI _ n l v ) e - ' v ~ d v '  
L(~)( 151 + I~11 + I( - TII I(I + 1771 + }( 

and 

(3.3) B(l'J)(l"J')((" z}') --= L " - '  Y](PCPl)Y]"(Pn'Pt)dcr(Pl)" 

Tk,l,j Thus we know t h a t ,  k',t',j, is a vector-valued paracommutator (see [AFP]), and 

we can transform it into an ordinary paracommutator. Let T k ' l ' j  and T k''l' 'j ' be 
k' the operators from A~j onto L2(R n) and from L2(R n) onto Az,,j, respectively 

tk,t,J defined in section 2. Let b,k,,r,y be the operator from L2(R n) onto itself defined 

by 
k , l , j  " ' "  k l " k I .,  .i (tb,kU,,3,f)(z) := (r~'"'T~,;,~l,,~,T " '~ f ) (x )  

where f E L2(R~). Then we can get (omitting the details) 

-1 1 f n  ^ ^ k,z,j (3.4) (t~,'~;J,,,j,f)^(~) = k¢~,,j ~ ~ .f(rl)b(¢, rl)Ak,,t,j, (¢, o)dn. 

t k , t , j  k , l , j  Thus b,k'J,,j' is a paracommutator with kernel -1 k¢~.~.jAk,,l,j,(~,r} ). Now let us 

estimate the degree of the vanishing of Ak,t(~, r/) as ~/--, ~. Using the definition 

of L~'~)(x), we get 
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(3.5) / f  y°e-yL~ ")(.y)Ll °)(by)dy 
= r ( k  + a + 1 ) r ( / +  a + 1)- 

m~ b/(1 _ b)t_ j aJ(1 _ a)k_ j 
E ( k ,  l) 0 - - - - J~  (k - j ) ! r (a  + j + 1) 
j=l 

: r ( k  + a + 1)r( /+ a + 1)(1 - a)k(1 - b) L 
r (a  + 1)l!k! 

2F1 - l , - k ; a +  1; ( 1 -  a ) (1 -  b) 

I'(a+l+k+l) 
- rq  + ~)Z!k! (1 - a)k(1 - b) ~. 

2F1 - l , - k ; - k - 1 -  a; (1 :--a~i---b)]" 

Let 

Then 

(3.6) 

(3.7) 

a : =  21~1 a n d  b : =  21Yl 
I~1+ I~I+I~-vl I~1+1~1+1~-~1" 

l_a_l~l-I~1+1(-~1 ,~ I~-~.___]_1 
I~l+l~l+l~-~l I~1+1~1' 

l _ b = l ~ l - I ~ 1 + 1 ( - ~ 1  ~ I~-~_....__LI 
I~1+1~1+1~-~1 I~l+l~l" 

If k > k', then by (3.5), 

Ak,k, ((, ~) = F(a + k' + k + l) (1 - a) k-k'. 
F(/+ a)k ' !k !  

k' ( - k ' )~ , ( - k )~ ,  (,  _ a - b)V(1 - a)k'-v(1 - b) k'-~ (3.8) ~ (_k_ k,_ ~)~!,l 
u=0 

r q  + ~ ) ( k -  k')!k'! + ~1(1 - ~/(1 - b)e~(~, b) + . . . .  

If k < k', then also by (3.5) 

(3.9) Ak'k' (~,T/) = 

(1 - b )  k'-k ~ ( -1)kr(a  + k' + 1) / 
[ r(k + ~)(k' - k)!k! + c2(I - a)(1 - b)P2(a, b) + . . . .  

In (3.8) and (3.9), Pl (a ,  b) and P2(a, b) are polynomials in a, b. 
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Concerning B(tJ)(l',J')(~ ', ~/), from (3.3) and the fact that da(pl) is invariant 

under the action of SO(n), we have 

(3.10) BtJ't'J' (~ ', ~1') = ~s,,-, YJ'(P~'P~' P)Y]; (p)da(p). 

Since yjt(p¢,p;,lp) e 1t,, then by the orthogonality of yjt,yj;, we have 

B(J'O(J"t')(( ', q~) = 0 for l ¢ l', thus (1) of Theorem 2 is true. 

I f /  = l', denote ~f = p~,p-~l • SO(n). By the relation of YS,G~ given in 

section 2, we assume Y] = G~, yjl, = G ~  with 

K = ( k l , . . . , k n _ 3 , + k n - 2 ) ,  M = ( m l , . . . , m n _ 3 , + m k _ 2 ) .  

Then 
tn  t G l = 

N 

see [Vi], p. 469. Thus 

B(J,O(Y,t)((',rl' ) = f GtK(3'-iP)GZM(P)dcr(P) = t~M(~f), 
Js 

with -y = pv,p-~ 1. Except for a finite number of points ~', 7/' in S n-l,  t~M("f ) # O, 
as the case K = 0, t ~ ( ' ~ )  can be expressed by Gegenbauer polynomials and the 

cosine of the Euler angles of 7. For k ¢ k', by these discussions and (3.6), (3.7), 

,k,t,j satisfy A1, A2, A3(Ik - k'l) and A4 { in [JP], (3.8), (3.9), we know that ~b,k',t',j' 
[P], thus (3) and (4) of Theorem 2 is true by the theory of paracommutators (cf. 

[JP], IF]). If k = k', by (3.8) or (3.9) and similar discussions, we can get (2) of 

Theorem 2. 

,-pk,l,j Remark: In the definition of the Toeplitz-Hankel type operator . b,k',l'j', the 

symbol b is defined by (2.13). In fact, we can consider a more general symbol, 

e.g. b(x, a, p) is given by 

or 

b(~, a, p) : e-I~l~YJ: (p), 

b( ¢, a, p) = L (~) ( 21(la (P), 

and we can establish similar results to Theorem 2. 
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